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Abstract. The possibility that Schrödinger’s equation with a given potential can separate in more
than one coordinate system is intimately connected with the notion of superintegrability. Here
we demonstrate, for nondegenerate potentials, how to establish a complete list of such potentials
that are superintegrable on the complex 2-sphere, using essentially algebraic means. We classify
all such potentials that admit a pair of second-order constants of motion. Here ‘nondegenerate’
means that the potentials depend on four independent parameters. The method of proof generalizes
to other spaces and dimensions. We show for the 2-sphere that all these superintegrable systems
possess the remarkable property that they correspond to quadratic algebras, and we work out the
detailed structure relations and their quantum analogues.

1. Introduction

It has long been known that Schrödinger’s equation with certain special potentials can admit
(multiplicative) separation of variables in more than one coordinate system. This is intimately
related to the notion of superintegrability [1–4]. This subject has been studied by a number
of authors, based on the use of the corresponding differential equations that that are implied
by the requirement of simultaneous separability [5–14]. Specifically, superintegrability means
that for a Schrödinger equation in dimension N there exist 2N − 1 functionally independent
quantum mechanical observables (i.e. second-order† self-adjoint operators that commute with
the Hamiltonian). There is an analogous concept of superintegrability for classical mechanical
systems that relates to the corresponding additive separation of variables of the Hamilton–
Jacobi equation. Also, if we do have simultaneous separability then the resulting constants of
motion close quadratically under repeated application of the Poisson bracket [15,16]. We also
know that for spaces of constant curvature separable coordinate systems of the free motion are
described by quadratic elements of the corresponding first-order symmetries [17]. Although
concrete examples of superintegrable systems on constant-curvature spaces are easily at hand,
a complete classification of all such systems has presented major difficulties. How can one be
sure that all systems for free motion have been found? Once these are determined, how can
one be sure that the most general additive potential term has been calculated?

† We restrict our definition to second-order symmetries because it is only these that could possibly be related to
variable separation. A classification of superintegrable systems involving observables of arbitrary order remains open
and it is not clear whether our method of integrability conditions would be tractable in the more general case.
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In [18] we have solved the classification problem for all nondegenerate systems on two-
dimensional complex Euclidean space. Here we solve the problem for the more difficult case
of the two-dimensional complex sphere, including real spheres and hyperboloids as special
cases. In particular, we classify all nondegenerate potentials that admit a pair of second-
order constants of motion. Here ‘nondegenerate’ means that the potentials depend on four
independent parameters. The requirement that a potential admit two constants of motion leads
to two second-order partial differential equations obeyed by the potential, and the integrability
conditions for these two simultaneous equations permit us to classify all possibilities. (We
believe that this paper contains the first complete list of the possibilities, as well as a
completeness proof. This is not a simple problem. For example [19] omits several of our cases.)
The classification is greatly simplified by the equivalence of two potentials that are related by
an action of the motion group SO(3, C). We can prove that each nondegenerate potential is
associated with a pair of constants of motion in the classical case, and a pair of symmetry
operators in the quantum case, that, remarkably, generate a quadratic algebra. Furthermore,
we verify that there is a one-to-one correspondence between superintegrable systems and free-
field symmetry operators that generate quadratic algebras. Finally, we demonstrate explicitly
that second-order superintegrability implies multiseparability, i.e. separability in more than
one coordinate system.

2. Superintegrability on the complex sphere

We follow the approach of [18] and start by computing the possible second-order constants of
motion for a Hamilton–Jacobi equation, with potential, on the complex sphere. (Inevitably, the
only potentials that are candidates for superintegrability are those which are separable in more
than one coordinate system on the two-dimensional complex sphere S2C .) Here one considers
the generators of the corresponding complex rotation group

J1 = ypz − zpy J2 = zpx − xpz J3 = xpy − ypx. (1)

The Hamilton–Jacobi equation is

H ′ = J 2
1 + J 2

2 + J 2
3 + V ′(x, y, z) = E′ (2)

where x2 + y2 + z2 = 1. To start with, it is convenient to make use of the natural embedding
of the complex sphere in complex Euclidean 3-space. Consider the Hamiltonian

H = p2
x + p2

y + p2
z + V (x, y, z) (3)

in E3C , where V = r−2V ′ with r2 = x2 + y2 + z2. Then

H = r−2(xpx + ypy + zpz)
2 + r−2H ′

and we can identify the constants of motion L for H ′ with constants of motion for H such that

{L, xpx + ypy + zpz} = {L, r2} = 0. (4)

Here of course

{f, g} =
3∑

j=1

(
∂f

∂pj

∂g

∂xj
− ∂f

∂xj

∂g

∂pj

)
(x1, x2, x3) = (x, y, z). (5)

We now determine the conditions that the function

L =
3∑

j,k=1

ajk(x, y)pjpk + W(x, y, z) = � + W ajk = akj (6)
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must satisfy to be a constant of motion for H ′. The conditions (4) imply∑
j

xj ∂xjW = 0. (7)

Furthermore, these conditions and the requirement {H,L} = 0 imply that the quadratic terms
in L are expressible as a second-order polynomial in the Jk ,

� = AJ 2
3 + BJ 2

1 + CJ 2
2 + DJ3J1 + EJ3J2 + FJ1J2 (8)

and that

∂xjW =
3∑

k=1

ajk∂xkV . (9)

The integrability conditions

∂xk (∂xjW) = ∂xj (∂xkW) k �= j

are

(−2Axy + Dyz + Exz − Fz2)(Vyy − Vxx) + (−2Cxz − Dy2 + Eyx + Fyz)Vyz

+2(A[y2 − x2] + [C − B]z2 + Dxz − Eyz)Vxy

−(−2Byz + Dxy − Ex2 + Fzx)Vxz

= (−6Ay + 3Ez)Vx + (6Ax − 3Dz)Vy + (3Dy − 3Ex)Vz

(−2Cxz − Dy2 + Eyx + Fyz)(Vzz − Vxx) + (−2Axy + Dyz + Exz − Fz2)Vyz

+2(C[z2 − x2] + [A − B]y2 − Eyz + Fxy)Vzx

−(−2Byz + Dxy − Ex2 + Fzx)Vyx

= (−6Cz + 3Ey)Vx + (−3Ex + 3Fz)Vy + (6Cx − 3Fy)Vz

(−2Byz + Dxy − Ex2 + Fzx)(Vzz − Vyy) + (−2Axy + Dyz + Exz − Fz2)Vxz

+2([A − C]x2 + B[z2 − y2] − Dxz + Fxy)Vzy

−(−2Cxz − Dy2 + Eyx + Fyz)Vxy

= (−3Dy + 3Fz)Vx + (−6Bz + 3Dx)Vy + (6By − 3Fx)Vz.

(10)

The homogeneity requirement on the embedded potential can be expressed as

xVx + yVy + zVz = −2V

and this leads to the additional second-order conditions

xVxx + yVxy + zVxz = −3Vx

xVxy + yVyy + zVyz = −3Vy

xVxz + yVzy + zVzz = −3Vz.

(11)

Note that here the ‘trival’ solution for all of these equations is V = c/r2.
One way to attack the problem of finding all superintegrable potentials on the sphere is to

classify all potentials V that admit two functionally independent constants of motion and are
‘nondegenerate’ in the sense that they depend on four arbitrary constants, one of which can
be considered to be the trivial constant c. The potential must satisfy two sets of equations of
the form (10) and the conditions (11). These nine equations, not all independent, enable us to
solve for the second derivativesVxx, Vyy, Vzz, Vxz, Vyz as linear combinations of the derivatives
Vxy, Vx, Vy, Vz. Then all higher derivatives can be expressed in terms of those four, and
integrability conditions obeyed by the higher derivatives imply linear relations between the four
derivatives. Nondegeneracy of the potential means that at a nonsingular point (x0, y0, z0) on
the sphere we can prescribe the values of Vxy, Vx, Vy, Vz arbitrarily. Thus the coefficients of all
linear relations between these derivatives must vanish identically for nondegenerate potentials.
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Similarly, the linear relations between the terms inVxx, Vyy, Vzz, Vxz, Vyz on the left-hand sides
of the original nine equations imply the same linear relations betweenVxy, Vx, Vy, Vz, and these
must also vanish identically. This approach to superintegrability on the sphere will prove useful
in a forthcoming paper, where we study superintegrability in 3-space. However, we will adopt
a simpler method for the remainder of this paper.

A second way to carry out the analysis (and the one that we shall follow) is directly in
terms of coordinates x, y, z on the 2-sphere where x2 + y2 + z2 = 1. We shall take x, y

as independent variables and set z = ±
√

1 − x2 − y2 with the sign depending on whether
we are on the upper or lower hemisphere of S2C . (Thus, we are adopting coordinates that
correspond to the orthogonal projection of the sphere onto the tangent space at the north pole.)
In some formulae we will adopt the convention (x, y, z) = (y1, y2, y3). In these coordinates
the generators of the complex rotation group are

J1 = −y3p2 J2 = y3p1 J3 = y1p2 − y2p1. (12)

The Hamilton–Jacobi equation is

H ′ = (1 − y2
1 )p

2
1 − 2y1y2p1p2 + (1 − y2

2 )p
2
2 + V (y1, y2) = E′. (13)

Now the Poisson bracket of functions f (y1, y2, p1, p2), g(y1, y2, p1, p2) is

{f, g} =
2∑

j=1

(
∂f

∂pj

∂g

∂yj
− ∂f

∂yj

∂g

∂pj

)
(y1, y2) = (x, y). (14)

We next determine the conditions that the function

L =
2∑

j,k=1

ajk(y1, y2)pjpk + W(y1, y2) = � + W ajk = akj (15)

must satisfy to be a constant of motion forH ′. It is straightforward to show that the requirement
{H ′, L} = 0 implies that the quadratic terms in L are expressible as a second-order polynomial
in the Jk ,

� = α1J
2
3 + α2J

2
1 + α3J

2
2 + α4J3J1 + α5J3J2 + α6J1J2 (16)

and that (with ∂yjW ≡ Wj , etc)

W1 =
(
(1 − y2

2 )a

y2
3

+
y1y2b

2y2
3

)
V1 +

(
(1 − y2

2 )b

2y2
3

+
y1y2c

y2
3

)
V2 (17)

W2 =
(
y1y2a

y2
3

+
(1 − y2

1 )b

2y2
3

)
V1 +

(
y1y2b

2y2
3

+
(1 − y2

1 )c

y2
3

)
V2 (18)

where

a(y1, y2) = (α1 − α3)y
2
2 + α3(1 − y2

1 ) − α5y2y3

b(y1, y2) = −2α1y1y2 + α4y2y3 + α5y1y3 − α6(1 − y2
1 − y2

2 )

c(y1, y2) = (α1 − α2)y
2
1 + α2(1 − y2

2 ) − α4y1y3.

(19)

The integrability conditions

∂x(∂yW) = ∂y(∂xW)

are

[2(α3 − α1)xyz + α4y(1 − x2) + α5x(1 − x2 − 2y2) + α6z(1 − x2)]

×
(
Vxx − 1 − y2

xy
Vxy

)
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+[2(α1 − α2)xyz − α4y(1 − 2x2 − y2) − α5x(1 − y2) − α6z(1 − y2)]

×
(
Vyy − 1 − x2

xy
Vxy

)
= (6[α1 − α3]yz + 3α4xy − 3α5(1 − x2 − 2y2) + 3α6xz)Vx

+(6[α2 − α1]xz + 3α4(1 − 2x2 − y2) − 3α5xy − 3α6yz)Vy. (20)

We denote the V solution space of this equation by

[α1, . . . , α6]. (21)

Let us now return to our assumption that the Hamilton–Jacobi equation admits two constants
of motion:

Lh =
2∑

j,k=1

a
jk

(h)pkpj + W(h) h = 1, 2.

These two operators together withH ′ are assumed to be functionally independent. The constant
of motion L1 leads to the condition (21) on the potential V , whereas L2 leads to the second
condition

[β1, . . . , β6]. (22)

The potential must lie in the intersection of the solution spaces (21), (22) for these two
conditions. It follows that the equations

Vxx − 1 − y2

xy
Vxy = AVx + BVy Vyy − 1 − x2

xy
Vxy = CVx + DVy (23)

must hold, where

AE = −12H12xy
2z2 + 6H14y

2z(y2 − 1 + x2) + 12H13xy
2z2 + 6H16yz

2(y − x2 − 1)

−6H15xyz(x
2 + y2) + 6H25xyz(2y

2 + x2 − 1) + 6H26x
2yz2

−12H23xy
2z2 + 6H24x

2y2z + 6H34y
2z(1 − 2x2 − y2)

+6H36yz
2(1 − y2) + 6H35xyz(1 − y2)

+3H45y(2x
2 − 1 − 2y4 − 4x2y2 + 3y2 − 2x4)

−6H46x
3yz + 3H56z(2y

4 − 3y2 + 1)

BE = 6H15x
2z + 12H14xyz(1 − y2 − 2x2) + 6H16xz

2 − 6H26xz
2

+12H24xyz(2x
2 + y2 − 1) − 6H25x

2z + 3H46z(1 − 2x2 − y2)(1 − 2y2)

+3H45x(1 − 2x2 − y2)(1 − 2y2)

2CE = −6H16yz
2 − 6H14y

2z + 6H36yz
2 + 6H34y

2z

+3H45y(2y
2 + x2 − 1) + 3H56z(1 − 2y2 − x2)

2DE = −12H12x
2yz2 + 6H16xz

2(1 − x2 + y2) + 6H15x
2z(1 − y2 − x2)

+12H13x
2yz2 + 6H14xyz(2 − 3x2 − y2) + 6H24xyz(x

2 − 1) (24)

−6H26xz
2(1 − x2) + 6H25x

2z(2y2 + x2 − 1) − 12H23x
2yz2

+6H34xyz(2x
2 + y2 − 1) − 6H36xy

2z2 − 6H35x
2y2z

+3H45x(1 − 4y2 + 6x2y2 − 3x2 + 2x4 + 2y4)

+3H46z(1 − x2)(1 − 2x2 − 2y2) + 6H56xy
3z

E = −4H13x
2y2(1 − x2 − y2) + 2H16(1 − x2)(x2 − y2)xy + 2H15x

2yz(y2 + x2)

+4H12x
2y2(1 − x2 − y2) − 2H14xy

2z(x2 + y2)
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−2H26xy(1 − x2 − y2)(x2 − 1)

+2H24xy
2z(1 − x2) − 2H25x

2yz(2y + x2 − 1)

+4H23x
2y2(1 − x2 − y2)

+2H36xy(1 − x2 − y2)(y2 − 1) − 2H34xy
2z(1 − 2x2 − y2)

+2H35x
2yz(y2 − 1)

−2H45xy(y
2 − y4 − 2x2y2 − x4 + x2)

−2H46x
2yz(1 − x2) − 2H56xy

2z(y2 − 1)

and Hk� = −H�k = αkβ� − α�βk .
Differentiating each of equations (23) with respect to x and y, we obtain four equations

for the four third-derivatives of V , expressed in terms of Vx, Vy, Vxy :

Vxxx = 1

xy(−1 + y2 + x2)
((xy3 − xy + yx3)Bx

+(yx − 2y3x)Ex + (yx3 − yx + y3x)AB

+(y2x2 − y4x2)By + (yx + y5x)CB

+y5xEx − 2y3xCB + (y2x2 − y4x2)BE)Vy

+
1

yx(−1 + y2 + x2)
((x3y − xy + xy3)Ax + (y2x2 − y4x2)Ay

+(yx + y5x − 2y3x)Cx + (yx + y5x − 2y3x)CA + (y2x2 − y4x2)BC

+(y3x + yx3 − yx)A2)Vx

+
1

yx(−1 + y2 + x2)
((2y2 + x2 − y4 − y4x2 − 1)A

+(3y4 − y6 − 3y2)C + y3x3B + yxE
−3x − 2y3xE + 3xy2 + y5xE)Vxy (25)

Vxxy = −1

x(−1 + y2 + x2)
(−x3y2BE + y3x2Ex − x3y2By

−x2yCB − x2yEx + y3x2CB)Vy

− 1

x(−1 + y2 + x2)
(−x3y2Ay + y3x2Cx − x2yCA + y3x2CA

−x2yCx − x3y2BC)Vx

− 1

x(−1 + y2 + x2)
(−x2yB − x3y2A − y2 − x2yE + 1 + y3x2E

−xy4C − xC + 2x2 + x4yB + 2xy2C)Vxy (26)

Vxyy = 1

y(−1 + y2 + x2)
(−x3y2BE + (xy2 − x3y2)By + y2xBE

+y3x2Ex + y3x2CB)Vy

+
1

y(−1 + y2 + x2)
((xy2 − x3y2)Ay + (y2x − x3y2)BC

+y3x2CA + y3x2Cx)Vx

+
1

y(−1 + y2 + x2)
((xy2 − x3y2)A + (x4y − 2x2y + y)B

+x2 + y3x2E − (xy4 + xy2)C(x, y) − 2y2 − 1)Vxy (27)
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Vyyy = 1

yx(−1 + y2 + x2)
((x3y + xy3 − xy)Ey + (y2x2 − x4y2)Ex − x4y2CB

+yxBE + x5yBy + yx3E2 + (xy − 2x3y)By − 2x3yBE
+y2x2BC + x5yBE + (y3x − yx)E2)Vy

+
1

yx(−1 + y2 + x2)
((y2x2 − x4y2)Cx + (xy + x5y − 2x3y)Ay

+(x3y − xy + xy3)Cy + (y3x − yx + x3y)EC + (y2x2 − x4y2)CA

+(xy − 2x3y + x5y)BC)Vx

+
1

yx(−1 + y2 + x2)
((y2 − x4y2 + 2x2 − x4 − 1)E

+(x5y + xy − 2x3y)A + x3y3C + (3x4 − x6 − 3x2 + 1)B

−3y + 3x2y)Vxy. (28)

Thus if the potential V is subject to the two conditions (21), (22), then V can depend
on at most three parameters, in addition to a trivial additive constant. We can choose these
parameters to be Vx(x0, y0), Vy(x0, y0), Vxy(x0, y0) for any fixed regular point (x0, y0). Then
Vxx(x0, y0), Vyy(x0, y0) and all higher derivatives can be computed in terms of Vx, Vy, Vxy by
successive differentiation and utilization of relations (23).

We require that our potential be nondegenerate, i.e. that it depend on three arbitrary
parameters. Then, the three conditions ∂yVxxx = ∂xVxxy, ∂yVxxy = ∂xVxyy and ∂yVxyy =
∂xVyyy for the fourth partial derivatives lead to nine integrability conditions, since we can
equate the coefficients of Vx, Vy and Vxy in each of these identities. (Otherwise V would
necessarily depend on fewer than three arbitrary parameters.)

Note that if we have another constant of motion L3 associated with a nondegenerate
potential, then L3 must be a linear combination of H ′ = J 2

1 + J 2
2 + J 2

3 , L1, L2. Indeed, if
L3 is not a linear combination of the basis functions, then the potential V must satisfy an
equation (10) that is linearly independent of the equations associated with L1, L2. This means
an additional constraint on the solution space and thatV can depend on at most two parameters,
which is a contradiction.

The integrability conditions are only guaranteed to be necessary conditions for the
existence of a three-parameter potential. However, we shall find that they are in fact sufficient.
Each of the nine conditions can be expressed as a polynomial identity in the variables x, y

whose coefficients are homogeneous polynomials in the coefficients Hij . Since these relations
must hold identically in x, y we can equate to zero each of the components in the polynomial
expansion. The resulting expressions are lengthy; we used the symbol manipulation program
MAPLE to compute them. Even then they would have been very cumbersome to solve if
we had not been able to simplify the computation further by taking advantage of SO(3, C)

equivalence.
We will now use the nine conditions to classify the possible potentials V and the

corresponding constants of motionL1, L2. For this we note that it is only the three-dimensional
subspace spanned by H,L1, L2 that matters; we can choose any basis for this subspace. Hence
we can replace the conditions (21), (22) by linear combinations of themselves without changing
the potential. Moreover, to further simplify the results we note that we can always subject the
coordinates (x, y), and L1, L2 to a simultaneous complex rotation motion, i.e. we regard all
translated and rotated potentials as members of the same equivalence class.

We will consider two superintegrable systems on the complex sphere as the same if one
system can be transformed to the other via an action of the complex orthogonal groupSO(3, C).
One can identify the adjoint action of SO(3, C) on the second-order elements in the enveloping
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algebra of so(3, C) with the action via similarity transformation of this group on the space
of 3 × 3 complex symmetric matrices. (Here, J · J corresponds to the identity matrix.) A
straightforward computation shows that this actions divides the second-order elements into
orbits (or equivalence classes). A representative from each orbit class is given by

J 2
3 (spherical) (29)

(J1 + iJ2)
2 (horospherical) (30)

J3(J1 + iJ2) (degenerate elliptic of type 2) (31)

J 2
1 + r2J 2

2 |r2| � 1 r2 �= 0, 1 (elliptic) (32)

(J1 + iJ2)
2 + sJ 2

3 s �= 0 (degenerate elliptic of type 1) (33)

J · J = J 2
1 + J 2

2 + J 2
3 . (34)

Here, J · J is invariant under the group action, and we can add arbitrary multiples of J · J to
any of these operators without changing the orbit class. See the appendix for a description of
the separable coordinates corresponding to these operators.

Our strategy to classify the three-dimensional subspaces of operators corresponding to
maximal parameter-dependent potentials is as follows. We choose �1 from one of the orbit
classes (29)–(33), where L1 = �1 +W1. We first take �2, (L2 = �2 +W2) as a general operator
[β1, . . . , β6]. However, we can then simplify �2 by adding arbitrary multiples of �1 and J · J
to it, by multiplying �2 by any nonzero complex number and by applying a complex rotation to
�2 that leaves �1 invariant. Note that J · J is invariant under all complex rotations. Finally we
apply the nine integrability conditions to L1 and the simplified L2, to determine those choices
of L2 that admit the nondegenerate potentials. We do this for each of the five choices of L1,
and then eliminate any duplications to obtain the final list of all nondegenerate potentials. (For
more details of the steps in this process, see [18] where the same computation was carried out
for two-dimensional complex Euclidean space.)

Suppose �1 = J 2
3 . This operator is invariant under an arbitrary complex rotation about

the z-axis. Such a rotation will leave β1, I1 = β2 + β3, I2 = β2β3 − β2
6/4 and I3 = β2

4 + β2
5

invariant. If we can rotate such that the transformed β6 = 0 then we can achieve the form
[0, 1, 0, β4, β5, 0]. The integrability conditions require β4 = β5 = 0.

Case 1a.

[1, 0, 0, 0, 0, 0] [0, 1, 0, 0, 0, 0]. (35)

Here,

L1 = J 2
3 + W(1) L2 = J 2

1 + W(2) (36)

V (x) = α

x2
+

β

y2
+

γ

z2
. (37)

This potential allows separation in spherical and elliptic coordinates. (Note: due to
expressions (17), (18), it is always a straightforward integration to compute the termsW(j), and
we will not list these explicitly. Furthermore, once the constants of motion for a superintegrable
system are known, it is relatively straightforward to determine the possible separable coordinate
systems associated with this system. This is due to the fact that the constants of motion for the
separable coordinate systems are already known (see the appendix). The only complication is
that we may have to apply an SO(3, C) transformation to the standardized constant of motion
for the separable system to obtain the corresponding symmetry of the superintegrable system.
Here, we simply list the separable systems associated with each superintegrable system, and
provide details only in the cases where shifted coordinates occur.)



Multiseparable superintegrability 6799

If I1 = I2 = 0 but not all of β2, β3, β6 are zero, then we can rotate to achieve
[0, 1,−1, β4, β5, 2i]. Again integrability conditions require β4 = β5 = 0.

Case 1b.

[1, 0, 0, 0, 0, 0] [0, 1,−1, 0, 0, 2i]. (38)

Here,

L1 = J 2
3 + W(1) L2 = (J1 + iJ2)

2 + W(2) (39)

V (x) = α

z2
+

β

(x + iy)2
+
γ (x − iy)

(x + iy)3
. (40)

This potential allows separation in spherical, horospherical and degenerate elliptical
coordinates of type 1.

If β2 = β3 = β6 = 0, I3 = 0, we can achieve β5 = −iβ4, which satisfies the integrability
conditions.

Case 1c.

[1, 0, 0, 0, 0, 0] [0, 0, 0, 1,−i, 0]. (41)

Here,

L1 = J 2
3 + W(1) L2 = J3(J1 + iJ2) + W(2) (42)

V (x) = α

(x + iy)2
+

βz√
x2 + y2

+
iγ√

(x − iy)(x + iy)2
. (43)

Separability is possible in spherical coordinates and degenerate elliptic coordinates of type 2.
If I3 �= 0 we have the following.

Case 1d.

[1, 0, 0, 0, 0, 0] [0, 0, 0, 1, 0, 0]. (44)

Here,

L1 = J 2
3 + W(1) L2 = J3J1 + W(2) (45)

V (x) = αz√
x2 + y2

+
1√

x2 + y2

[
β√

x2 + y2 + x
+

γ√
x2 + y2 − x

]
. (46)

Separation of variables is possible in spherical coordinates and rotated elliptic coordinates,
{R1, R2}. A suitable choice of the latter is

z1 = i

2

(A2
+ + A2

−)(R1R2 + 1) + 2A+A−(R1 + R2)

(A2
+ − A2−)

√
R1R2

z3 = −1

2

R1R2 + 1√
R1R2

z2 =
√
(A+R1 + A−)(A−R1 + A+)(A+R2 + A−)(A−R2 + A+)

(A2
+ − A2−)

√
R1R2

with the associated operator (A2
− − A2

+)J1J3 − i(A2
+ + A2

−)J
2
3 .

Now suppose �1 = J 2
1 + r2J 2

2 , corresponding to (32). In this case there is no
simplification possible by rotation and we must apply the integrability conditions for general
[0, 0, β3, β4, β5, β6]. We find that the integrability conditions are satisfied if and only if
β3 = ±ir , β3 = β4 = 0 and β6 = 1.
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Case 2.

[0, 1, r2, 0, 0, 0] [0, 0, ir, 0, 0, 1]. (47)

Here,

L1 = (c2 − 1)2J 2
3 − 4c2J 2

1 + W(1) L2 = c2J 2
3 − (J1 − iJ2)

2 + W(2)

V (x) = α(z+ + c2z−)√
(c2z− − z+)2 − 4c2z2

3

+
β(z+ − c2z−)(z+z− + z2

3)

z2
3

√
(c2z− − z+)2 − 4c2z2

3

+
γ z+z−
z2

3

(48)

z± = x ± iy, z3 =
√

1 − x2 − y2 and c2 = (1 + r)/(1 − r). Separation of variables is possible
in elliptical and degenerate elliptic coordinates of type 1.

Next suppose �1 = (J1 − iJ2)
2. Then, eliminating case 1b above, the only possibilities

for L2 are operators of the form [β1, 1, 0, β4, β5, 0], or [β1, 0, 0, 1, 0, 0], or [β1, 0, 0, 1,−i, 0],
and only the last of these with β1 = 0 satisfies the integrability conditions.

Case 3.

[0, 1,−1, 0, 0,−2i] [0, 0, 0, 1,−i, 0] (49)

where

L1 = (J1 − iJ2)
2 + W(1) L2 = J3(J1 − iJ2) + W(2)

V (x) = α

(x + iy)2
+

βz

(x + iy)3
+
γ (1 − 4z2)

(x + iy)4
.

(50)

Separation of variables is possible in horospherical coordinates and degenerate elliptic
coordinates of type 2.

One can verify from the integrability conditions that orbit (33) does not occur for any
nondegenerate potential, other than the cases already listed. This completes the classification
of these potentials. The results are summarized in table 1.

For a general choice of operators L1, L2 it is not the case that R2 = {L1, L2}2 is a
polynomial in L0, L1, L2, i.e. there is no quadratic algebra structure. However, we can
demonstrate that there is a quadratic algebra associated with each nondegenerate potential
above. Because we are working in two dimensions there can only be three functionally
independent constants at most. Consequently all Poisson brackets must be functionally
dependent on H = L0, L1 and L2. We want to show that in fact R2 = {L1, L2}2 =
F(L0, L1, L2) is a polynomial in these variables. First, we can verify that this is true when
the potential is turned off, i.e. if we consider only the functions

�h =
2∑

j,k=1

a
jk

(h)pkpj h = 1, 2 �0 = (1 − y2
1 )p

2
1 − 2y1y2p1p2 + (1 − y2

2 )p
2
2

where Lh = �h + W(h). Let R = {�1, �2}. Then for each of the cases 1–3 listed above it
is straightforward to check that R2 = P3(�0, �1, �2) where P3 is a homogeneous third-order
polynomial in its arguments†. It follows that

R2 = F(L0, L1, L2) = P3(L0, L1, L2) + F4(s, L0, L1, L2) (51)

where F4 is a fourth-, second- and zeroth-order polynomial in the momenta px, py , and
F4(0, L0, L1, L2) = 0. Here, the parameters in the potential are denoted by s = (V 0

x , V
0
y , V

0
yy),

evaluated at some fixed point (x0, y0), and F4 is a polynomial function of these parameters.

† Moreover, it is straightforward to verify that the cases corresponding to nondegenerate potentials are the only cases
where P3 is a homogeneous third-order polynomial in its arguments. Thus the possible quadratic algebras generated
by second-order elements in the Lie algebra of SO(3, C) correspond one to one with nondegenerate potentials.
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Table 1.

Potential V Coordinate system

V1 = α

x2
+

β

y2
+

γ

z2
Spherical

Elliptic

V2 = αz√
x2 + y2

+
1√

x2 + y2
Spherical

×
(

β√
x2 + y2 + x

+
γ√

x2 + y2 − x

)

Elliptic II

V3 = α

(x + iy)2
+

βz

(x + iy)3
+
γ (1 − 4z2)

(x + iy)4
Horospherical

Degenerate elliptic of type 2

V4 = α

z2
+

β

(x + iy)2
+
γ (x − iy)

(x + iy)3
Spherical

Horospherical
Degenerate elliptic of type 1

V5 = α

(x + iy)2
+

βz√
x2 + y2

+
iγ

√
x − iy

x2 + y2
Spherical

Degenerate elliptic of type 2

V6 = α(z+ + c2z−)√
(c2z− − z+)2 − 4c2z2

Elliptic

+
β(z+ − c2z−)(z+z− + z2)

z2
√
(c2z− − z+)2 − 4c2z2

+
γ z+z−
z2

z± = x ± iy c2 = (1 + r)/(1 − r) Degenerate elliptic of type 1

From the definition of the Poisson bracket we have

{�1,R} = 1

2

∂P3

∂�2
(�0, �1, �2)

{�2,R} = −1

2

∂P3

∂�1
(�0, �1, �2)

hence

{L1, R} = 1

2

∂P3

∂L2
(L0, L1, L2) +

1

2

∂F4

∂L2
(s)

{L2, R} = −1

2

∂P3

∂L1
(L0, L1, L2) − 1

2

∂F4

∂L1
(s)

where the ∂F4/∂Lh(s) have only terms of orders two and zero in the momenta. It follows
that the ∂F4/∂Lh(s) must be expressible as linear combinations of the Lh. This shows that
the commutators {Lh,R} can be expressed as polynomials in L0, L1, L2. It is then a simple
matter to verify that F itself is a polynomial in L0, L1, L2.

We now list the quadratic algebra relations for each of the cases studied above. In view
of relations

{L1, R} = 1

2

∂F

∂L2
{L2, R} = −1

2

∂F

∂L1
. (52)

it is sufficient to give the relation R2 = F(L0, L1, L2) for each case.
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Case 1a. [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0]

R2 = 16L2L1(H
′ − L1 − L2 − α − β − γ ) − 16[αL2

2

+β(H ′ − L1 − L2 − α − β − γ )2 + γL2
1] + 64αβγ.

Case 1b. [1, 0, 0, 0, 0, 0], [0, 1,−1, 0, 0, 2i]

R2 = −16L2
2L1 − 16γH ′2 − 16γL2

1 − 16βH ′L2 − 32γHL1 − 16βL2L1 + 16αβL2

−32αγL1 + 32αγH ′ + 16αγ (γ − α).

Case 1c. [1, 0, 0, 0, 0, 0], [0, 0, 0, 1,−i, 0]

R2 = −4L2
2L1 − 4αL2

1 + 4αH ′L1 + 2γL2L1 + iβγL2 − γ 2

4
H ′ + β2α − iβ2

4
.

Case 1d. [1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]

R2 = −4L3
1 − 4L2

2L1 + 4L2
1H

′ − 2(β + γ )L2
1 − 2(β + γ )L2

2 + 4αL1L2 + 4βγL1

+4αβL2 − 4βγH ′ + 2βγ (β + γ ) − 2βα2.

Case 2. [0, 1, r2, 0, 0, 0], [0, 0, ir, 0, 0, 1]

R2 = 32c4(c2 − 1)H ′3 − 16c2(c4 − 1)L3
2 − 16c2L2

1L2 + 32c2(c2 − 1)(2c2 + 1)L2
2H

′

+16(2c2 − 1)L2
2L1 − 16(c2 − 1)(5c2 + 1)c2H ′2L2 + 16c4H ′2L1

−32c2(2c2 − 1)L2L1H
′ + 64γ (c4 − 1)L2

2

−128γ c2(c2 − 1)H ′L2 − 64γ c2L2L1

+16c2[(c2(α − β))2 − (α + β)2]L2 − 16c4(β − α)2L1

−32c4(β − α)(c2(β − α) + β + α)H ′ − 64c4γ (β − α)2.

Case 3. [0, 1,−1, 0, 0, 2i], [0, 0, 0, 1, i, 0]

R2 = 4L3
1 + 16γL2

2 + 8αL2
1 + 16γH ′L1 − 4βL2L1 − 4βαL2 − β2H ′.

3. Quantum superintegrability on the two-dimensional sphere

Here we give the analogous quantum algebras for superintegrable systems arising from the
potentials we have already computed. The main difference is that the Poisson bracket is now
replaced by the commutator bracket [A,B] = AB − BA and the operators H,L1 and L2

are the obvious (formally self-adjoint) symmetry partial differential operators, built from the
symmetry operators

J1 = −z∂y J2 = z∂x J3 = x∂y − y∂x (53)

where z =
√

1 − x2 − y2 and

H = J 2
1 + J 2

2 + J 2
3 + V (x, y) Lh =

2∑
k,j=1

∂k(a
kj

(h))∂j + W(h)(x, y) h = 1, 2. (54)

The Hamilton–Jacobi equation is replaced by the Schrödinger equation

H+ = E+. (55)
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Just as for the Hamilton–Jacobi case, if we have another constant of motion (symmetry operator)
L3 associated with a maximal potential, then L3 must be a linear combination of H,L1, L2.
Indeed, ifL3 is in self-adjoint form, then the conditions that [H,L3] = 0 are identical with (16),
(where we replace JhJk by 1

2 {Jh, Jk}) and (17), (18). Thus, if L3 is not a linear combination
of the basis functions, then the potential V must satisfy an equation (10) that is linearly
independent of the equations associated with L1, L2. This means an additional constraint on
the solution space and that V can depend on at most two parameters, which is a contradiction.

Furthermore the proof of the existence of quadratic algebra relations at the end of section 2
goes through almost unchanged for the operator case: [L1, L2]2 = R2 and [L1, R], [L2, R]
can be expressed as (symmetric) polynomials in the operators L1, L2, H . To make the prior
construction go through, one need only note that, since R2 is a formally self-adjoint sixth-order
differential symmetry operator, the fifth-order terms are fixed linear functions of the sixth-order
terms. The expressions {A,B} = AB+BA and {A,B,C} = ABC+CAB+BCA are operator
symmetrizers. The explicit relations are the following.

Case 1a.
[Li, R] = 4{Li, Lk} − 4{Li, Lj } − (8 + 16aj )Lj + (8 + 16ak)Lk + 8(aj − ak)

R2 = 8
3 {L1, L2, L3} − (16a1 + 12)L2

1 − (16a2 + 12)L2
2 − (16a3 + 12)L2

3

+ 52
3 ({L1, L2} + {L1, L3} + {L2, L3}) + 1

3 (16 + 176a1)L1

+ 1
3 (16 + 176a2)L2 + 1

3 (16 + 176a3)L3 + 32
3 (a1 + a2 + a3)

+48(a1a2 + a1a3 + a2a3) + 64a1a2a3

(56)

where a1 = γ, a2 = α, a3 = β, L1 + L2 + L3 +
∑

ah = H and i, j, k are chosen such that
εijk = 1, where ε is the purely skew-symmetric tensor.

Case 1b.
[R,L2] = 8L2

2 + 16γH + 8βL2 + 16γL1 − (8γ − 16αγ )

[R,L1] = −8{L2, L1} − 8βH − 16L2 − 8βL1 + 8β(α − 1)
R2 = − 8

3 {L2, L2, L1} − 16γH 2 − 176
3 L2

2 − 16γL2
1 − 16βHL2 − 32γHL1

−8β{L2, L1} − (−16αβ + 176
3 β)L2 + ( 176

3 γ − 32αγ )L1

+(32αγ + 32
3 γ )H + ( 32

3 γ + 16β2α + 32
3 αγ − 16α2γ − 12β2).

(57)

Case 1c.

[R,L2] = 2L2
0 − α

4
H + αL1 +

1

8
α

[R,L1] = −2{L2, L1} − L2

R2 = −2

3
{L2, L2, L1} − 11

3
L2

2 − αL2
1 + αHL1 +

11

12
αL1 − 1

12
αH +

α

4

(
β2 +

1

6

)
.

(58)

Case 1d.

[R,L1] = −2{L1, L2} + 2αL1 − (2γ + 2β + 1)L2 + (2αβ + 1
2α)

[R,L2] = 6L2
1 + 2L2

2 − 4HL1 + 1
2H + (2β + 2γ − 3)L1 − 2αL2 − (β + γ + 2βγ )

(59)

R2 = −4L3
1 − 2

3 (L2, L2, L1} + 4L2
1H + (11 − 2β − 2γ )L2

1

+(− 11
3 − 2β − 2γ )L2

2 − 11
3 HL1 + α{L1, L2}

+2( 22
3 (β + γ ) + 4βγ )L1 + ( 11

3 α + 4βα)L2 + (− 1
6 − 3

2γ − 4βγ − 3
2β)H

+(− 1
6β − 1

6γ + 3
4β

2 + 3
4γ

2 − 2βα2 + 2β2γ + 13
6 βγ − 3

4α
2 + 2βγ 2). (60)
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Case 2.

[R,L2] = −8c4H 2 − 8(2c4 − 1)L2
2 + 16c2(2c2 − 1)HL2 + 8{L2, L1}

+16c2(2c2 − 1)H + 8(4γ c2 + 1 − 2c4)L2 + 16c4L1 + 8[(α − β)2 + 4γ ]c4,

[R,L1] = −8(c2 − 1)(5c2 + 1)c2H 2 − 24c2(c4 − 1)L2
2 − 8c2L2

1

+32c2(c2 − 1)(2c2 + 1)HL2 − 16c2(2c2 − 1)HL1 + 8(2c2 − 1){L2, L1}
+16c2(2c6 − c4 − 4c2γ − c2 + 4γ + 1)H

+16(−c8 + c4 + 4c4γ − 4γ − 1)L2

+8c2(−4γ + 2c4 − 1)L1 + 8c2[(c2(α − β))2 − (α + β)2 + 4c4γ ]

R2 = 32c4(c2 − 1)H 3 − 16c2(c4 − 1)L3
2 − 16

3 c2{L1, L1, L2} (61)

+32c2(c2 − 1)(2c2 + 1)L2
2H + 8

3 (2c
2 − 1){L2, L2, L1}

−16(c2 − 1)(5c2 + 1)c2H 2L2 + 16c4H 2L1

−16c2(2c2 − 1){L2, L1} − 176
3 c4(2c2 − 1)2H 2

+(64γ (c4 − 1) − 176
3 (c8 + c4 − 1))L2

2 − 176
3 c4L2

1

+(−128γ c2(c2 − 1) + 352
3 c2(2c6 − c4 − c2 − 1))HL2

+(−32γ c2 + 88
3 c2(2c4 − 1)){L2, L1} + (−16c4(β − α)2 − 704

3 c2γ )L1

+(16c2[(c2(α − β))2 − (α + β)2] + 704
6 c2γ )L2

+(−32c4(β − α)(c2(β − α) + β + α) + 32
3 c4 − 128

3 (11c2 − 5)c4γ )H

−64c4γ (β − α)2 + 32
3 c4α2 − 256γ 2c4 + 64

3 c4γ + 32
3 c4β2.

Case 3.
[L2, R] = −6L2

1 − 8γH + βH + 8αL1 − 2(α2 + 3γ )

[L1, R] = −16γL2 − 2βL1 + 2αβ
(62)

R2 = −4L3
1 + 16γL2

2 + 8αL2
1 − 16γHL1 + 2β{L2, L1} + 4αβL2

−(44γ + 4α2)L1 − β2H + (− 3
4β

2 + 32γα). (63)

We note that the quadratic relations in the quantum case provide useful information
relating the special functions that occur as (separable) eigenfunctions for each superintegrable
case [20–22]. For other applications of superintegrability on the real sphere or the real
hyperboloid see [20–25].

4. Conclusions

In this paper we have used the concept of a ‘nondegenerate potential’ to add structure to the
study of superintegrable classical and quantum mechanical systems on the complex 2-sphere.
We have shown how to classify all such systems in a straightforward manner, so that gaps can
be avoided. In particular, potentials V5 and V6 in our table appear to be new. Furthermore, we
have shown the following.

(1) Each system is associated with a pair of constants of motion in the classical case, and a
pair of symmetry operators in the quantum case, that generate a quadratic algebra.

(2) There is a one-to-one correspondence between second-order superintegrable systems and
free-field symmetry operators that generate quadratic algebras.

(3) Second-order superintegrability implies multiseparability, i.e. separability in more than
one coordinate system.
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Appendix

As is well known [17, 26], there are essentially five coordinate systems on the complex 2-
sphere in which the free-particle Hamilton–Jacobi equation separates: spherical, elliptic,
horospherical and degenerate elliptic of the first and second types. We describe these
coordinate systems and their corresponding free-particle constants of motion L. (We adopt
the basis J1 = −zpy, J2 = zpx, J3 = xpy − ypx , for the Lie algebra so(3, C), where
z =

√
1 − x2 − y2.) The systems are the following.

Spherical coordinates

x = sin θ cosϕ y = sin θ sin ϕ

z = cos θ L = J 2
3 .

(64)

Elliptic coordinates

x2 = (ru − 1)(rv − 1)

1 − r
y2 = r(u − 1)(v − 1)

1 − r
z2 = ruv L = J 2

1 + rJ 2
2 .

(65)

Horospherical coordinates

x = i

2

(
v +

u2 − 1

v

)
y = 1

2

(
v +

u2 + 1

v

)

z = iu

v
L = (J1 + iJ2)

2.

(66)

Degenerate elliptic coordinates of type 1

x + iy = 4cuv

(u2 + 1)(v2 + 1)
x − iy = (u2v2 + 1)(u2 + v2)

cuv(u2 + 1)(v2 + 1)

z = (u2 − 1)(v2 − 1)

(u2 + 1)(v2 + 1)
L = (J1 + iJ2)

2 − c2J 2
3 .

(67)

Degenerate elliptic coordinates of type 2

x + iy = −iuv x − iy = i

4

(u2 + v2)2

u3v3

z = i

2

u2 − v2

uv
L = J3(J1 − iJ2).

(68)
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